Skip to main content

Shortcuts to quantum network routing

EddieSchoute.png

Speaker

Eddie Schoute(QuICS and Qutech, Delft University of Technology, the Netherlands.)

Event Type

JQI-QuICS-CMTC Lunch Seminar

Date & Time

December 2, 2016, 12:15pm

Where to Attend

PSC 2136

Lunch served at 12:00

A quantum network promises to enable long distance quantum communication and assemble small quantum devices into a large quantum computing cluster. Each network node can thereby be seen as a small quantum computer. Qubits can be sent over direct physical links connecting nearby quantum nodes, or by means of teleportation over pre-established entanglement amongst distant network nodes. Such pre-shared entanglement effectively forms a shortcut - a virtual quantum link - which can be used exactly once.
We present an abstraction of a quantum network that allows ideas from computer science to be applied
to the problem of routing qubits and managing entanglement in the network. Specifically, we consider a scenario in which each quantum network node can create EPR pairs with its immediate neighbors over a physical connection and perform entanglement swapping operations in order to create long distance virtual quantum links. We proceed to discuss the features unique to quantum networks that call for the development of new routing techniques. As an example, we present two simple hierarchical routing schemes for a quantum network of N nodes for a ring and sphere topology. For these topologies we present efficient routing algorithms requiring O(log N) qubits to be stored at each network node, O(polylog N) time and space to perform routing decisions, and O(log N) timesteps to replenish the virtual quantum links in a model of entanglement generation.

Based on the paper: arXiv:1610.05238